
PHYS 242 BLOCK 8 NOTES
Sections 15.1 to 15.7

A mechanical wave travels through some medium (a gas, a liquid, a solid, …). As the wave passes by, the
particles of the medium are displaced away from equilibrium and back … . (See www.ncat.edu/~gpii.)

In a transverse wave, the particles oscillate perpendicular (transverse) to the direction the wave moves.
In a longitudinal wave, the particles oscillate along the direction the wave moves.
As Fig. 15.4 shows, a periodic wave travels one wavelength λ in one period of time T, so its wave speed is

υ = 
λ
T  . Remember from simple harmonic motion that f = 

1
T  , so υ = λf   for all periodic waves. The scalar

quantities υ, λ, f, and T are never negative.

υ is the wave speed (in 
m
s  ).

λ is the wavelength (in m)—the spatial length of one complete wave.
f is the frequency (in Hz = hertz) 1 Hz = 1 (complete wave or oscillation or cycle)/s = 1 s–1.
T is the period (in s)—the time for one complete wave or oscillation or cycle.
Cover up the solution and carefully work Example 15.1.

Recall that ω ≡ 2πf  , where ω is the angular frequency (in 
rad
s  ).

Also, we define k ≡ 
2π
λ , where k is the wave number (in 

rad
m ). 

The scalar quantities ω and k are also never negative. The “2π” in these two equations is 2π radians.

Now let’s find the wave speed υ in terms of ω and k: υ = λf = 
2π
k  
ω
2π , so υ = 

ω
k  .

The term sinusoidal includes cosines as well as sines. We now consider sinusoidal functions of x and t,
y(x,t), for waves. At the origin (where x = 0), let y(0,t) = A cos ωt. For waves moving in the +x-direction, at some
position x (in m) and time t (in s), we have a displacement component y(x,t) that occurred at the origin at the earlier

time t – 
x
υ , giving y(x,t) = A cos ω(t – 

x
υ ) = A cos ω(

x
υ  – t) = A cos (

ωx
ω/k  – ωt) = A cos (kx – ωt). For waves

moving in the –x-direction, we simply replace the minus in the parentheses with a plus. That is,
y(x,t) = A cos (kx – ωt)   is the wave function for a sinusoidal wave moving in the +x-direction and

y(x,t) = A cos (kx + ωt)   is the wave function for a sinusoidal wave moving in the –x-direction.

A is the amplitude (in m)—the maximum displacement component (ymax) from equilibrium.
(kx +–  ωt) (usually in radians) is the phase of the motion.
Cover up the solution and carefully work Example 15.2 using Eq. (15.7) rather than Eq. (15.4).

For a particle of the medium:
1. Its displacement component from equilibrium is y(x,t) = A cos (kx +–  ωt).

2. Its velocity component is υy = 
∂y
∂t   = ±ωA sin (kx +–  ωt), so (υy)max = ωA.

3. Its acceleration component is ay = 
∂υy
∂t   = 

∂2y
∂t2  = –ω2A cos (kx +–  ωt) = –ω2y, so (ay)max = ω2A.



Equation 15.12 is called the wave equation.

If we move along with a wave crest, we’ll see the string (or wire or cable or rope or spring or …) moving
past us at the wave speed υ. We can accurately fit a very small length L of the crest to a circle of radius R. The

weight of this length is negligible, so ∑Fy = may becomes –2F sin θ = m(– 
υ2

R  ). Since θ is very small, we can

accurately replace sin θ with θ (in rad), where θ = 
L/2
R  . Also, m = µL. Substituting into –2F sin θ = m(– 

υ2

R  )

solves to υ = 
F
µ  . The quantities υ, F, and µ are never negative.

υ is the wave speed (in 
m
s  ) on the string (or wire or cable or rope or spring or …).

F is the magnitude of the tension (in N), which is the force stretching the string … .

µ is the mass per length, 
m
L  (in 

kg
m , NOT 

g
m)  of the string … . Note that L is NOT the self-inductance. Also

note µ is NOT the metric prefix 10-6, NOT the magnetic dipole moment NIA, and NOT the permeability.
Cover up the solutions and carefully work Example 15.3.

Section 15.5 derives the following for sinusoidal waves on a string … : Pav = 
1
2  µFω2A2  .

Pav is the average power (in W = watt) carried by a transverse sinusoidal wave moving along a string … .
Cover up the solution and carefully work Example 15.4.
A traveling wave is simply one that travels from one place to another. As illustrated in Fig. 15.19a, when a

traveling wave on a string … comes to a fixed end, it is inverted (π rad phase change) upon reflection. However, if
it comes to a free end, as in Fig. 15.19b, it is not inverted (zero phase change) upon reflection.

For linear materials, the principle of superposition holds: When two or more waves overlap, the resulting
displacement is the vector sum of the displacements of the individual waves.

Interference is the result of two or more waves adding together at a point. In constructive interference,
the resulting amplitude is greater. In destructive interference, the resulting amplitude is smaller. A node is a
point of zero motion (no displacement). An antinode is a point of maximum magnitudes of motion and
displacement.

A standing wave is one that has no net wave velocity and transmits no net power. A standing wave is
made up of two traveling waves that are identical except for opposite directions and a possible phase difference.
For example, y1(x,t) = A cos (kx – ωt) moving in the +x-direction, then reflecting from a fixed end (and inverting) to
become y2(x,t) = –A cos (kx + ωt). By the principle of superposition, y(x,t) = y = y1(x,t) + y2(x,t). Using the trig
identity cos (a ± b) = cos a cos b +–  sin a sin b, we have the wave function of a standing wave on a string …
y = (2A sin kx)sin ωt  . Here A is the amplitude (in m) of either traveling wave and 2A is the amplitude (in m) of

the standing wave at its antinode(s).
As illustrated in Fig. 15.23e, for a standing wave: 1. the nodes and antinodes alternate, 2. the distance from

a node to its nearest antinode is one-quarter wavelength (
λ
4 ) and, 3. the distance from a node to its nearest node (or

from an antinode to its nearest antinode) (if they exist) is one-half wavelength (
λ
2 ) .

Cover up the solution and carefully work Example 15.6 (where ASW = 2A).


