
PHYS 242 BLOCK 7 NOTES
Sections 29.1 to 29.7, 30.1 to 30.3

Experimentally, we find ε = –N 
dΦΒ
dt  , called Faraday’s law of induction.

ε is the induced emf (in V)—a potential difference that may give an induced current.
N is the number of turns (no unit).
ΦΒ is the average magnetic flux (in Wb) through each turn at some time t (in s).

 
dΦΒ
dt   is the rate at which ΦΒ is changing with time (in 

Wb
s  ). Thus 1 

Wb
s   = 1 V.

Lenz’s law: The direction of any magnetic induction effect is such as to oppose the cause of the effect.

The derivation on page 969 gives a relation that we can write as ε = υ⊥B⊥l⊥  .

ε is the (motional) emf (in V).

υ⊥, Β⊥, and l⊥ are the mutually perpendicular components of the velocity υ → (in 
m
s ) , the uniform

 magnetic field B → (in T) , and the length vector l → (in m)  of a straight segment.
Cover up the solutions and carefully work Examples 29.1 to 29.5 and 29.7 to 29.10.

Since the emf is a potential difference, and a potential difference equals the integral of E → ·d l → , for a single

loop Faraday’s law of induction becomes ∫oE →·d l → = – 
dΦB
dt  .

This E →  is the induced electric field (in 
V
m  or 

N
C  ).

Cover up the solution and carefully work Example 29.11.

Eddy currents are induced currents that circulate within the volume of a conducting material.

Trying to apply Ampere’s law (∫oB → ·d l →  = µ 0Iencl) in Fig. 29.21 gives Iencl = iC through the plane
surface, but Iencl = 0 through the bulging surface. Maxwell resolved this contradiction by defining a quantity in the

dielectric called the displacement current iD: iD ≡ ε 
dΦE
dt  . The displacement current is not an actual motion of

charge, but has the SI unit of ampere = amp = A. Note iD = 0 only if the electric flux ΦE is constant.

ε is the permittivity (in 
C2

N·m2  or 
F
m ).

ΦE is the electric flux (in 
N·m2

C   or V·m).

 
dΦE
dt   is the rate  at which the electric flux changes with time (in 

N·m2
C·s   or 

V·m
s  ).

Thus, when no magnetic materials are present, Ampere’s law becomes ∫oB → ·d l →  = µ0(iC + iD)encl.
iC is the enclosed conduction current (in A) (caused by actual motion of charge)
iD is the enclosed displacement current (in A) (caused by changing enclosed electric flux).
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The four Maxwell’s equations summarize classical electromagnetism. The first four questions on your
final exam will involve matching verbal descriptions to these four equations. For no dielectric or magnetic materials,
Maxwell’s equations reduce to:

 ∫oE → ·dA →  = 
Qencl
ε0  , telling us electric field lines can start on positive charges and end on negative charges.

 ∫oB → ·dA →  = 0, telling us there are evidently no magnetic monopoles on which to start and end magnetic field lines.

 ∫oB → ·d l →  = µ0(iC + ε0 
dΦE
dt   ), telling us closed magnetic field lines are produced by the motion of charge and/or

by changing electric flux.

∫oE → ·d l →  = – 
dΦB
dt   , telling us closed electric field lines are evidently produced only by changing magnetic flux.

Suppose we have two coils, as in Fig. 30.1. A changing current in coil 1 will produce a changing magnetic
field, giving changing magnetic flux through coil 2 and, by Faraday’s law of induction, an induced emf in coil 2 :

ε2 = –N2
dΦΒ2

dt  , where N2ΦB2 = M21i1. Also ε1 = –N1
dΦΒ1

dt  , where N1ΦB1 = M12i2. Advanced electromagnetism

courses show M21 = M12 = M. Therefore, ε2 = –M 
di1
dt   and ε1 = –M 

di2
dt  .

ε2 is the emf (in V) induced in coil 2 due solely to the time rate of change of current 
di1
dt  (in 

A
s )  in coil 1.

ε1 is the emf (in V) induced in coil 1 due solely to the time rate of change of current 
di2
dt  (in 

A
s )  in coil 2.

M is the mutual inductance (in henry = H).

Solving both N2ΦB2 = Mi1 and N1ΦB1 = Mi2 for M gives us M = 
N2ΦB2

i1  = 
N1ΦB1

i2  .In this equation, all

quantities are never negative.
N2 and N1 are the numbers of turns in coils 2 and 1 (no units).
ΦB2 is the average magnetic flux (in Wb) through each turn of coil 2 due solely to i1, the current (in A) in coil 1.
ΦB1 is the average magnetic flux (in Wb) through each turn of coil 1 due solely to i2, the current (in A) in coil 2.

The SI unit one henry is equivalently 1 H = 1 
Wb
A   = 1 

T·m2
A   = 1 

(N/A·m)·m2
A   = 1 

J
A2  = 1 

J
(C/s)·A  = 1 

V·s
A   = 1

Ω·s.
Cover up the solutions and carefully work Examples 30.1 and 30.2.

Now suppose we consider a single coil, as in Fig. 30.4. A changing current in that coil will produce a
changing magnetic field, giving changing magnetic flux through the coil and, by Faraday’s law of induction, an

self-induced emf ε (in V): ε = –N 
dΦΒ
dt  , where NΦB = Li, which gives ε = –L 

di
dt  . Thus L = 

NΦB
i   is the self-

inductance L (in H) of that coil (often just called the inductance of that coil). In L = 
NΦB

i  , all four quantities are

never negative.
Cover up the solutions and carefully work Examples 30.3 and 30.4.
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Suppose we have two ordinary coils. Each coil will have a self-inductance (L1 and L2) and the two coils

may also have a mutual inductance (M). Thus, for coil 1, we can write ε1,self = –L1
di1
dt  , with L1 = 

N1(ΦB)1
i1  , where

(ΦB)1 is the average magnetic flux through each of the N1 turns of coil 1 due solely to coil 1’s current i1. Thus
(ΦB)1 (from coil 1’s current) is not the same average magnetic flux as ΦB1 (from coil 2’s current). For coil 2, we

similarly write ε2,self = –L2
di2
dt  , with L2 = 

N2(ΦB)2
i2   [where (ΦB)2 (self) is not the same as ΦB2 (mutual)]. That is,

we have three possible inductances (L1,L2, and M ) and four possible emfs (ε1,self, ε1,mutual, ε2,self, and
ε2,mutual).

An inductor (sometimes called a choke) is a circuit element used mainly for its inductance.

On page 999, the text derives an expression for the magnetic potential energy U  (in J) stored in the

magnetic field of an inductor of (self-)inductance L (in H) when carrying a current I (in A): U = 12LI2  . The unit

equivalence 1 H = 1 
J

A2  is helpful in this equation.

Cover up the solution and carefully work Example 30.5.

Similar to using U = 12  CV2 and a parallel-plate capacitor to find the energy density u of an electric field, we

now use U = 12 LI2 and a toroid to find the energy density u of a magnetic field. Consider a toroid of small cross
section and two layers of wire wound so that its magnetic field is zero outside the “dough” of its doughnut-
shaped core.

First we find its self-inductance L = 
NΦB

i   = 
NBA

i  . We substitute B = 
µNI
2πr   and i = I to find L = 

µN2A
2πr  . By

definition, u = 
U

volume  = 
1
2LI2

volume  = 

1
2 

µN2A
2πr  I2

(2πr)A   = 
1
2µ (µNI

2πr) 2 = 
1
2µ  B2. This final expression has none of the

dimensions of the toroid left and is true for all linear materials (those with a constant µ ): u = 
B2
2µ  .

u is the energy density (in 
J

m3 ) of the magnetic field B → (in T) .

µ (mu) is the permeability of the material (in 
T·m
A  ).

µ0 is the permeability of vacuum (µ0 ≡ 4π × 10–7 
T·m
A  ).

Thus µ ≡ µ0 by definition for vacuum and also for nonmagnetic materials. Because of their ordinarily weak
magnetizations, µ is slightly greater than µ0 for paramagnetic materials (if not at very low temperatures) and µ is
slightly less than µ0 for ordinary diamagnetic materials (not superconducting).

We must distinguish between U (magnetic potential energy), u (energy density), and µ (permeability). To
minimize confusion, in this block we will not also use µ to stand for the magnitude of the magnetic dipole moment
(as in µ = NIA). However, we may use the metric prefix µ = 10–6, as in µ H.
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