PHYS 242 BLOCK 7 NOTES

Sections 29.1 to 29.7, 30.1 to 30.3

Experimentally, we find $\mathcal{E} = -N \frac{d\Phi_B}{dt}$, called Faraday's law of induction.

 \mathcal{E} is the induced emf (in V)—a potential difference that may give an induced current.

N is the number of turns (no unit).

 Φ_B is the average magnetic flux (in Wb) through each turn at some time t (in s).

 $\frac{d\Phi_B}{dt}$ is the *rate* at which Φ_B is changing with time (in $\frac{Wb}{s}$). Thus $1 \frac{Wb}{s} = 1$ V.

Lenz's law: The direction of any magnetic induction effect is such as to oppose the cause of the effect.

The derivation on page 969 gives a relation that we can write as $\left| \mathcal{E} = v_{\perp} B_{\perp} l_{\perp} \right|$.

 $\boldsymbol{\mathcal{E}}$ is the (motional) emf (in V).

 v_{\perp} , B_{\perp} , and l_{\perp} are the *mutually perpendicular components* of the velocity \vec{v} (in $\frac{m}{s}$), the uniform

magnetic field \overrightarrow{B} (in T), and the length vector \overrightarrow{l} (in m) of a straight segment.

Cover up the solutions and carefully work Examples 29.1 to 29.5 and 29.7 to 29.10.

Since the emf is a potential difference, and a potential difference equals the integral of $\vec{E} \cdot d \vec{l}$, for a single loop Faraday's law of induction becomes $\boxed{\oint \vec{E} \cdot d \vec{l}} = -\frac{d\Phi_B}{dt}$.

This
$$\vec{E}$$
 is the *induced electric field* (in $\frac{V}{m}$ or $\frac{N}{C}$).

Cover up the solution and carefully work Example 29.11.

Eddy currents are induced currents that circulate within the volume of a conducting material.

Trying to apply Ampere's law $(\oint \vec{B} \cdot d \vec{l} = \mu_0 I_{encl})$ in Fig. 29.21 gives $I_{encl} = i_C$ through the plane surface, but $I_{encl} = 0$ through the bulging surface. Maxwell resolved this contradiction by defining a quantity in the dielectric called the **displacement current** i_D : $i_D = \varepsilon \frac{d\Phi_E}{dt}$. The displacement current is *not* an actual motion of charge, but has the SI unit of ampere = amp = A. Note $i_D = 0$ only if the electric flux Φ_E is constant.

 $\varepsilon \text{ is the permittivity (in \frac{C^2}{N \cdot m^2} \text{ or } \frac{F}{m}).}$ $\Phi_E \text{ is the electric flux (in \frac{N \cdot m^2}{C} \text{ or } V \cdot m).}$ $\frac{d\Phi_E}{dt} \text{ is the rate at which the electric flux changes with time (in \frac{N \cdot m^2}{C \cdot s} \text{ or } \frac{V \cdot m}{s}).}$ Thus, when no magnetic materials are present, Ampere's law becomes $\oint \vec{B} \cdot d\vec{l} = \mu_0(i_C + i_D)_{\text{encl}}.$

 $i_{\rm C}$ is the enclosed conduction current (in A) (caused by actual motion of charge)

i_D is the enclosed displacement current (in A) (caused by changing enclosed electric flux).

The four **Maxwell's equations** summarize classical electromagnetism. The first four questions on your *final* exam will involve matching verbal descriptions to these four equations. For no dielectric or magnetic materials, Maxwell's equations reduce to:

 $\oint \vec{E} \cdot d\vec{A} = \frac{Q_{\text{encl}}}{\varepsilon_0}$, telling us electric field lines can start on positive charges and end on negative charges. $\oint \vec{B} \cdot d\vec{A} = 0$, telling us there are evidently no magnetic monopoles on which to start and end magnetic field lines. $\oint \vec{B} \cdot d\vec{l} = \mu_0(i_{\text{C}} + \varepsilon_0 \frac{d\Phi_E}{dt})$, telling us closed magnetic field lines are produced by the motion of charge and/or by changing electric flux. $\oint \vec{E} \cdot d\vec{l} = -\frac{d\Phi_B}{dt}$, telling us closed electric field lines are evidently produced only by changing magnetic flux.

Suppose we have two coils, as in Fig. 30.1. A changing current in coil 1 will produce a changing magnetic field, giving changing magnetic flux through coil 2 and, by Faraday's law of induction, an induced emf in coil 2 : $\mathcal{E}_2 = -N_2 \frac{d\Phi_{B2}}{dt}$, where $N_2 \Phi_{B2} = M_{21}i_1$. Also $\mathcal{E}_1 = -N_1 \frac{d\Phi_{B1}}{dt}$, where $N_1 \Phi_{B1} = M_{12}i_2$. Advanced electromagnetism courses show $M_{21} = M_{12} = M$. Therefore, $\mathcal{E}_2 = -M \frac{di_1}{dt}$ and $\mathcal{E}_1 = -M \frac{di_2}{dt}$.

 \mathcal{E}_2 is the emf (in V) induced in coil 2 due *solely* to the time rate of change of current $\frac{di_1}{dt}$ (in $\frac{A}{s}$) in coil 1. \mathcal{E}_1 is the emf (in V) induced in coil 1 due *solely* to the time rate of change of current $\frac{di_2}{dt}$ (in $\frac{A}{s}$) in coil 2. *M* is the **mutual inductance** (in henry = H).

Solving both
$$N_2\Phi_{B2} = Mi_1$$
 and $N_1\Phi_{B1} = Mi_2$ for M gives us $M = \frac{N_2\Phi_{B2}}{i_1} = \frac{N_1\Phi_{B1}}{i_2}$. In this equation, all

quantities are never negative.

 N_2 and N_1 are the numbers of turns in coils 2 and 1 (no units).

 Φ_{B2} is the average magnetic flux (in Wb) through each turn of coil **2** due *solely* to i_1 , the current (in A) in coil **1**. Φ_{B1} is the average magnetic flux (in Wb) through each turn of coil **1** due *solely* to i_2 , the current (in A) in coil **2**. The SI unit one henry is equivalently $1 \text{ H} = 1 \frac{\text{Wb}}{\text{A}} = 1 \frac{\text{T} \cdot \text{m}^2}{\text{A}} = 1 \frac{(\text{N}/\text{A} \cdot \text{m}) \cdot \text{m}^2}{\text{A}} = 1 \frac{\text{J}}{\text{A}^2} = 1 \frac{\text{J}}{(\text{C/s}) \cdot \text{A}} = 1 \frac{\text{V} \cdot \text{s}}{\text{A}} = 1$ $\Omega \cdot \text{s}$.

Cover up the solutions and carefully work Examples 30.1 and 30.2.

Now suppose we consider a single coil, as in Fig. 30.4. A changing current in that coil will produce a changing magnetic field, giving changing magnetic flux through the coil and, by Faraday's law of induction, an self-induced emf \mathcal{E} (in V): $\mathcal{E} = -N \frac{d\Phi_B}{dt}$, where $N\Phi_B = Li$, which gives $\mathcal{E} = -L \frac{di}{dt}$. Thus $L = \frac{N\Phi_B}{i}$ is the self-inductance *L* (in H) of that coil (often just called the *inductance* of that coil). In $L = \frac{N\Phi_B}{i}$, all four quantities are never negative.

Cover up the solutions and carefully work Examples 30.3 and 30.4.

Suppose we have two ordinary coils. Each coil will have a self-inductance (L_1 and L_2) and the two coils may also have a mutual inductance (M). Thus, for coil **1**, we can write $\mathcal{E}_{1,\text{self}} = -L_1 \frac{di_1}{dt}$, with $L_1 = \frac{N_1(\Phi_B)_1}{i_1}$, where $(\Phi_B)_1$ is the average magnetic flux through each of the N_1 turns of coil **1** due *solely* to coil **1**'s current i_1 . Thus $(\Phi_B)_1$ (from coil **1**'s current) is *not* the same average magnetic flux as Φ_{B1} (from coil **2**'s current). For coil **2**, we similarly write $\mathcal{E}_{2,\text{self}} = -L_2 \frac{di_2}{dt}$, with $L_2 = \frac{N_2(\Phi_B)_2}{i_2}$ [where $(\Phi_B)_2$ (self) is *not* the same as Φ_{B2} (mutual)]. That is, we have three possible inductances (L_1, L_2 , and M) and four possible emfs ($\mathcal{E}_{1,\text{self}}$, $\mathcal{E}_{1,\text{mutual}}$, $\mathcal{E}_{2,\text{self}}$, and $\mathcal{E}_{2,\text{mutual}}$).

An inductor (sometimes called a *choke*) is a circuit element used mainly for its inductance.

On page 999, the text derives an expression for the magnetic potential energy U (in J) stored in the magnetic field of an inductor of (self-)inductance L (in H) when carrying a current I (in A): $U = \frac{1}{2}LI^2$. The unit equivalence 1 H = 1 $\frac{J}{A^2}$ is helpful in this equation.

Cover up the solution and carefully work Example 30.5.

Similar to using $U = \frac{1}{2} CV^2$ and a parallel-plate capacitor to find the energy density *u* of an electric field, we now use $U = \frac{1}{2}LI^2$ and a toroid to find the energy density *u* of a magnetic field. Consider a toroid of small cross section and two layers of wire wound so that its magnetic field is zero outside the "dough" of its doughnut-shaped core.

First we find its self-inductance $L = \frac{N\Phi_B}{i} = \frac{NBA}{i}$. We substitute $B = \frac{\mu NI}{2\pi r}$ and i = I to find $L = \frac{\mu N^2 A}{2\pi r}$. By definition, $u = \frac{U}{\text{volume}} = \frac{\frac{1}{2}LI^2}{(2\pi r)A} = \frac{\frac{1}{2}\frac{\mu N^2 A}{2\pi r}I^2}{(2\pi r)A} = \frac{1}{2\mu}\left(\frac{\mu NI}{2\pi r}\right)^2 = \frac{1}{2\mu}B^2$. This final expression has none of the dimensions of the toroid left and is true for all linear materials (those with a constant μ): $u = \frac{B^2}{2\mu}$. u is the energy density (in $\frac{J}{m^3}$) of the magnetic field \vec{B} (in T). μ (mu) is the **permeability** of the material (in $\frac{T \cdot m}{A}$). μ_0 is the permeability of vacuum ($\mu_0 = 4\pi \times 10^{-7} \frac{T \cdot m}{A}$).

Thus $\mu = \mu_0$ by definition for vacuum and also for nonmagnetic materials. Because of their ordinarily weak magnetizations, μ is slightly greater than μ_0 for paramagnetic materials (if not at very low temperatures) and μ is slightly less than μ_0 for ordinary diamagnetic materials (not superconducting).

We *must* distinguish between U (magnetic potential energy), u (energy density), and μ (permeability). To minimize confusion, in this block we will *not* also use μ to stand for the magnitude of the magnetic dipole moment (as in $\mu = NIA$). However, we may use the metric prefix $\mu = 10^{-6}$, as in μ H.