
PHYS 242 BLOCK 6 NOTES
Sections 28.1 to 28.8

Experimentally, we find B →= 
µ0
4π 

qυ → ×   r ^

r2  , which has magnitude B = 
µ0
4π 

|q|υ sin φ
r2  .

B →  is the magnetic field (in T) caused by a moving point charge.

µ0 ≡ 4π × 10–7 
T·m
A   exactly.

q is its charge (in C, where 1 C ≡ 1 A·s) and υ →  is its constant velocity (in 
m
s   ).

r is the distance (in m) from the source point (the point charge) to the field point.
r ^  is a unit vector directed from the source point to the field point. A unit vector has no unit but has

magnitude one (unity).
φ is the angle between the directions of υ →  and r ^ (as in Fig. 28.1a) .

Cover up the solution and carefully work Example 28.1.

The law of Biot and Savart, dB →= 
µ0
4π 

I d l → ×   r ^

r2  , has magnitude dB = 
µ0
4π 

I dl sin φ
r2  . Of course, to

find B → , we perform the vector integral of dB → : B →= 
µ0
4π ∫ I d l 

→ ×   r ^

r2    .

dB →   is the infinitesimal magnetic field (in T) caused by a current I (in A) flowing in an infinitesimal length
d l → (in m) (as illustrated with an exaggerated length dl in Fig. 28.3a) .

r is the distance (in m) from the source point (the infinitesimal length dl) to the field point and r ^  is the
corresponding unit vector.

φ is the angle between the directions of d l →  and r ^ .
These preceding vector equations tell us that the magnetic field is zero directly ahead of (φ = 0) or directly

behind (φ = 180˚) a moving point charge or a bit of current.
Cover up the solution and carefully work Example 28.2.

Outside a long straight wire, the law of Biot and Savart gives B = 
µ0I
2πr    , where r is the distance from the

center of the wire to the field point. A long straight wire’s magnetic field lines are circles centered on the wire.
Mentally grasp the wire with your right hand, with your extended thumb in the direction the current
flows. Your fingers then wrap around in the directions of B → . (See Fig. 28.6.)
Cover up the solutions and carefully work Examples 28.3 and 28.4

From Fig. 28.9, parallel currents attract, but antiparallel (opposite) currents repel.

On the axis of a flat circular coil of N turns, the law of Biot and Savart gives B = 
µ0NIa2

2(x2 + a2)3/2    , where x

is the distance (in m) along the axis from the center of the coil to the field point and a is the coil’s radius (in m). At

the coil’s center (that is, at x = 0), this equation reduces to B = 
µ0NI
2a     .

Cover up the solution and carefully work Example 28.6.



The direction of B →  on the axis of a circular coil is the same direction as the coil’s magnetic dipole moment
and area vectors: Wrap the fingers of your right hand around the coil the way the current flows. Then
your extended right thumb points along the coil’s axis in the direction of B → .

Ampere’s law is ∫oB →·d l → = µ0Iencl  , where Iencl is the net constant current (in A) enclosed by the path

of the integral. See how we use Ampere’s law in the high symmetry Examples 28.7, 28.8, 28.9, and 28.10.

A solenoid is a helical coil wrapped on a cylinder. When its length is much greater than its diameter,
Example 28.9 shows, near its center, B = µ0nI    , where n is the number of turns per length (in m–1).

A toroidal solenoid (more commonly called a toroid) is a coil wrapped on a doughnut-shaped core.

Example 28.10 shows B = 
µ0NI
2πr     , where N is the number of turns (no unit) and r is the distance (in m) from the

center to the field point (see Fig. 28.25). This B is the magnitude of the tangential magnetic field (in T) in the
“dough” of the doughnut-shaped core (that is, within the turns).

All our previous equations containing µ0 assume any materials present to be essentially nonmagnetic.

The magnetic dipole moments of atoms are caused mainly by the orbital and spin motions of their electrons
(nuclear magnetism is about 103 times smaller).

The magnetization M →  of a material is its net magnetic dipole moment per volume.
Outside of a magnet, its own magnetic field is away from its N-pole and toward its S-pole. In general, this

magnetic field decreases with distance from the magnet.

Paramagnetism is the temperature-dependent lining up of the atomic magnetic dipoles when placed in an
external magnetic field. In the material, except at very low temperatures, paramagnetism gives only a slight increase
over the external magnetic field value.

Diamagnetism is an induced effect that ordinarily gives a weak magnetization that opposes and slightly
decreases the value of the external magnetic field in the material. It can be a strong effect in superconductors.

In ferromagnetism, adjacent atomic magnetic dipoles line up in strong parallelism in regions called
magnetic domains. In unmagnetized ferromagnetic material, those domains have random orientations. An
external magnetic field causes those domains to grow and/or rotate to give a large magnetization. Figure 28.28
shows a magnetization curve for a ferromagnetic material. On the graph, B0 is the component of the magnetic
field that we’d have if no material were present and M is the component of the magnetization M →  in B0

→ ’s initial
direction. When M = Msat (where sat is short for saturation), the domains are as aligned as possible.

If the domains tend to remain aligned even after the external magnetic field is removed, we have the
phenomenon called hysteresis, which gives us permanent magnets and magnetic memory materials. Figure 28.29
shows a different hysteresis loop for each of three applications.


