
PHYS 242 BLOCK 3 NOTES
Sections 23.1 to 23.5

Rewriting General Physics I’s Eq. (6.14) as Eq. (23.1), the work Wa→b done by a forceF →  in moving a

particle from point a to point b is defined to be Wa→b ≡ ⌡
⌠

a

 b

 F→·d l →  = ⌡⌠
a

 b
F cos φ dl .

If the force is conservative, Wa→b = Ua – Ub, where U is the potential energy associated with that force.

If we have a test charge q0 outside a spherically-symmetric, same-sign charge q, Wa→b = ⌡
⌠

a

b

 F→·d l →  =

⌡⌠

a

 b
F cos φ dl , where F = 

1
4πε0 

qq0
r2   and dl cos φ = dr (see Fig. 23.6).Then integrating from ra to rb gives us

1
4πε0 

qq0
ra   – 

1
4πε0 

qq0
rb   = Ua – Ub. Thus the simplest choice for the potential energy expression is U = 

1
4πε0 

qq0
r  .

This equation also holds for opposite-sign charges. Any equation in this block containing ε0 is for vacuum ≈ air.
U is the electric potential energy (in J) (TERM 1).

Recall that 
1

4πε0  = 8.988 × 109 
N·m2

C2   ≈ 9.0 × 109 
N·m2

C2  .

q and q0 are the charges (in C)—(point or spherically symmetric) (recall that charges can be +, 0, or –).
r is the center-to-center distance (in m) between the two charges (recall that r is always +).
Thus we see that U is + for same-sign charges and – for opposite-sign charges.
We also see that U approaches zero as the distance r approaches infinity.
This U can be used in Ka + Ua = Kb + Ub (Wother = 0) (SKILL 1), as in Example 23.1.

The (electric) potential V at a point is the electric potential energy per charge at that point, V  =
U
q0 (TERM 2) . Therefore, dividing both sides of Wa→b = Ua – Ub by q0 tells us that the work per charge 

Wa→b
q0   is

the (electric) potential difference Va – Vb between points a and b (TERM 3):
Wa→b

q0  = Va – Vb  . We often

shorten Va – Vb to Vab (and for electric circuits, often further to just V).

V is the (electric) potential (in V = volt = 
joule

coulomb  = 
J
C ) (V can be +, 0, or –).

Wa→b is the work done (in J) by the external electric field in moving q0 from a to b (Wa→b can be +, 0, or –).

For a point charge q (or outside a spherically symmetric charge q) we can substitute U = 
1

4πε0 
qq0
r   to find

V = 
U
q0 = 

1
4πε0 

q
r  . For a collection of these charges, V = 

U
q0 = 

1
4πε0 Σ

qi
ri   = 

1
4πε0 (

q1
r1 + 

q2
r2 + …) .

qi is the charge (in C) of object i (qi is +, 0, or –).
ri is the distance (in m) from the center of object i (ri is always +).

For a continuous charge distribution, V = 
1

4πε0 ∫ 
dq
r  . That is, first find an expression for the dV from an

arbitrary dq in the distribution, then integrate to find V (SKILL 2).



Finding Va – Vb from E→ : Recall that Va – Vb = 
Wa→b

q0   = 

⌡
⌠

a

 b

 F
→·d l →

q0   = 

⌡
⌠

a

 b

q0E
→·d l →

q0  . Canceling out q0, we have

an equation we can use to find the potential difference if we know E→  all along any path from a to b.

Va – Vb = ⌡
⌠

a

 b

 E→·d l → = ⌡⌠
a

 b
E cos φ dl   .

In this introductory course, we’ll replace dl with dx or dy or dz or dr in the integral.

Note that E→  can have units of either 
V
m  or 

N
C : 1 

V
m  = 1 

J/C
m   = 1 

N·m/ /C
m/   = 1 

N
C .

Suppose that an electric field moves an electron (charge = –e = –1.602 × 10–19 C) through a potential rise
of one volt (Vb larger than Va by 1 V). Then

Wa→b = q0(Va – Vb) = –e(–1 V) = 1 eV = (1.602 × 10–19 C/  )(1 J/C/  ) = 1.602 × 10–19 J.
That is, one electron volt (1 eV) is defined to equal 1.602 × 10–19 J of work or energy (TERM 4).

Cover up the solutions and carefully work Examples 23.3 to 23.11.
The term equipotential means constant potential: V is constant at all points along an equipotential line,

over an equipotential surface, or throughout an equipotential volume (TERMS 5, 6, and 7). For equipotential

lines or surfaces, Va – Vb = V – V = 0 = ⌡⌠
a

 b
E cos φ dl  tells us that φ must be 90˚ (if E ≠ 0). Thus, electric field

lines are always perpendicular to equipotential lines or equipotential surfaces. If its free charges are at
rest overall, a conducting surface is always an equipotential surface with any electric field at its surface normal to
that surface. Since the derivative of a constant is zero, E→  = – ∇→ V tells us throughout an equipotential volume,
E = 0.

The electric field from a charged conducting surface tends to be greatest where the radius of curvature is
smallest (for sharp points and thin wires). This large electric field can break down the air, giving an electrical
discharge. In contrast, flatter areas tend to have smaller surface electric fields (SKILL 3).

Finding E→  from V: Va – Vb = ⌡⌠
b

 a
dV  = ⌡⌠

a

 b
(–dV)  and Va – Vb = ⌡

⌠

a

 b

 E→·d l →  tells us that –dV = E→ ·d l → .

Evaluating the scalar (dot) product in terms of components (see Eq. (1.21)) gives –dV = Exdx + Eydy + Ezdz.

Keeping both y and z constant gives dy = 0 and dz = 0, so –(
dV
dx  )y,z constant = Ex. Such a derivative is called a

partial derivative and we have: Ex = – 
∂V
∂x  , Ey = – 

∂V
∂y  , Ez = – 

∂V
∂z  , and Er = – 

∂V
∂r  .

Ex is the x-component of the electric field E→ (in 
V
m or 

N
C) (with the same idea for y, z, or r) .

Then E→  = Ex î   +  Ey ĵ   +  Ez k̂   = –( î  
∂ 
∂x  + ĵ  

∂ 
∂y  + k̂  

∂ 
∂z )V. The quantity in the parentheses is the

gradient operator ∇→ , so E→  = – ∇→ V. In words, the electric field equals the negative of the potential gradient
(TERM 8).

Cover up the solutions and carefully work Examples 23.13 and 23.14.


