8+10-83	7. B goud to some.		16	Jow 833	= 9: Loi	2.61	Aa	vy
PHYSICS 242	EXAM 10dS12	PAGE 1 OF	× .	Camps 21	Alm	1 Am		
AT THE RIC	GHT OF THE PAGE, FI	LL IN THE "o" O	F THE BEST AN	SWER, FOR	EXAN	/IPLE	E, d e .	
>IF YOU DON'	T KNOW IT, RULE OL	TTHE OBVIOU	SLY WRONG AN	ISWERS AN	DTHE	EN G	UES:	<u>S.</u> <
1. As we discusse shock wave make	d in class last Wednesda s an angle of wi	y, a plane "moving th its straight line	g at Mach 2" has a	a Mach numb	per of 2	2. Th	erefor	re
		in no strught mic	paul.					
		*						
a) arc $\sin \frac{1}{2}$	b) $\left(\frac{1}{2}\right)^{\circ}$	c) arc sin 2	d) 2°	30	bo	00	do	
	ding east in her Prius at 3					co	do	
east at 22 m/s on t	he same narrow road ahe	ad of Jasmine. Ja	smine sends out a	n intense ton	e from	a lo	udspe	al
on her Prius that s	he hears to be 880 Hz. H	er loudspeaker vit	orates at Jasm	ine O →33 1	n/s y	ou)→22	e n
a) $f_{\rm S} \neq 880$ Hz (to	be calculated from the da	ata given)	c) $f_{\rm S} = 880 {\rm Hz}$					
b) $f_{\rm L} \neq 880$ Hz (to	be calculated from the da	ata given)	d) $f_{\rm L} = 880 {\rm Hz}$	ao	bo	CO	do	
3. In Problem 2 at	pove, the frequency you l	near is						•••••
	be calculated from the da		c) $f_{\rm S} = 880 {\rm Hz}$		1		20	
D) JL ≠ 880 HZ (IO)	be calculated from the da	ata given)	d) $f_{\rm L} = 880 {\rm Hz}$	ao	bo	co	do	
4. In Problem 2 at	pove, $v_{\rm L}$ =	m/s.			*****			~~~~
a) +22	h) 22		1) 00					1
a) +33	b) –33	c) +22	d) –22	ao	bo	CO	do	
5. In Problem 2 at	povc, $v_{\rm S}$ =	m/s.					•••••	•••••
2) 123	b) -33				ha		do	
a) +33	0) -33	c) +22	d) –22	ao	00	co	do	
6. In Problem 2 at	ove, 345 m/s equals		E2					•••••
a) <i>v</i> _L	b) <i>v</i> _S	c) <i>c</i>	d) <i>v</i>	ao	bo	со	dø	1
7. The phenomeno	on in Problem 2 above is	called	10.000			*******		•••••
a) the Doppler effe	b) a plane wave	c) polarization	d) a shock w	vave as	bo	co	do	,
	ized em wave travels at 1 and time. Its magnetic fic $E = 0.023 \mu$							m
0.023	$(1.7 \times 10^8)(0.022)$	$(2.0 \times 10^{8})(0)$	0.0	23	ha	00	do	
a) $\frac{1.7 \times 10^8}{1.7 \times 10^8}$	b) (1.7 × 10 ⁸)(0.023)	$(3.0 \times 10^{3})(0.0)$	(323) $(1)\frac{1}{3.0}$	× 10 ⁸	00	0	uo	
9. In the em spectr	rum, which of the follow	ing bands contains	the highest freque	encies (lowest	t wavel	lengt	hs)?	
a) visible light	b) microwaves	c) ultraviolet	d) infrared	ao	bo	co	dø	
	rized em wave travels at and time. Its electric field							
	·							
a) $\frac{0.023}{1.7 \times 10^8}$	b) (1.7 × 10 ⁸)(0.023)	c) $(3.0 \times 10^8)(0.1)$	(023) d) $\frac{0.0}{3.0}$	$\times 10^8$ ao	bø	со	do	1
11. Em waves hav	e the property of	that	is, the direction of	\vec{E} is not ar	bitrary.			
a) antiarbitraring	b) pointing c)	polarization	d) electromagnet	izing ao	bo	CO	do	1
12. To three signif	ficant figures, all electror	nagnetic waves mo	ove in vacuum at _	ana ang ang ang ang ang ang ang ang ang				a nan di kana
a) 3.00 × 10 ⁸	b) 2.99 × 10 ⁻⁸			ao	bo		do	1
13. In the equation	n for the speed of an em	wave in a dielectric	c, ε is the	of	thc dic	lectri	ic in F	F/n
a) permeability	b) permittivity	c) Poynting vec	tor d) polariza	tion ao	bø	со	do	1
14. If the dielectric	c in Question 13 above is	diamagnetic at roo	om temperature, th	en µ approxi	mately	equa	ıls	
	8.854 × 10 ⁻¹² F/m	c) $4\pi \times 10^{-7}$ T·	m/A d)	1 ao	bo		do	1

STAPLE YOUR 3" × 5" CARD HERE<< PHYSICS 242 EXAM 10dS12					NOT HERE PAGE 2 OF 2				
15. In vacuum, in te	rms of B_{\max} , rathe	er than E_{max} , $S_{\text{av}} =$							
		(Burn 2							
Us =	2 C	$\frac{(B_{max})^2}{2M_0} = \frac{G_{max}^2}{2\frac{1}{C^2\varepsilon_0}}$ c) $\frac{B_{max}^2}{2\mu_0}$	2 63						
$B_{\rm max}^2$	$\varepsilon_0 B_{\rm max}^2$	B ² _{max} CE	- 1 2-2		_			1.5	
a) $\frac{1}{2\mu_0 c}$	b) $\frac{1}{2c}$	c) $\frac{1}{2u_0}$	d) $\frac{1}{2}\varepsilon_0 c^3 B_{\text{max}}^2$	ao	bo	co	dø	15.	
16. In Question 15 a	bove, B_{max} is the	amplitude of the	******		*****	***********	*******	**********	
a) sound level b) alastris field	a) radiation programs			1			10	
) electric field	c) radiation pressure	d) magneuc neid	ao	DO	co	do	16.	
17. An em wave arri	ves perpendicular	to a perfectly absorbing	surface in vacuum. It	exerts a	radia	tion p	pressu	re of	
		ave's intensity is							
a) $6 \times 10^{-6} \times 3 \times 10^{-6}$	8 Prod	c) $\frac{6 \times 10^{-6} \times 3}{2}$	$\times 10^{8}$						
		2							
b) $\frac{2(6 \times 10^{-6})}{3 \times 10^8}$		d) $\frac{6 \times 10^{-6}}{3 \times 10^{8}}$		aø	bo	со	do	17.	
	<i>K</i> 0 1 1 1	J X 10-	0 1 0						
standing electromage	K = 3 completely netic wave is set up	y fills the volume betwe o in the dielectric. The lo	en two perfectly refle west allowed frequence	cting pa	stand	plane ling w	e wal	s. A	
8 8					Julic		are i	5	
a) $\frac{v}{2L}$	b) $\frac{c}{3L}$	c) $\frac{c}{2L}$	d) $\frac{v}{L}$	ao	bo	со	do	18.	
Juni J	⁵⁷ <u>3L</u>	^{c)} <u>2L</u>					uo	10.	
19. Maxwell's equal	ions ten us that ac	celerated charges produc	e wav	es.					
a) sound	b) electromagne	tic c) shock	d) no	ao	bø	co	do	19.	
20 An em wave hits	normal to a perfec	ctly reflecting surface in	Vanuum Its radiation	procentro	0000	10			
20. All clil wave lifts			vacuum. Its radiation	pressure	equa	15			
	C R Ally								
2-2	b) $\frac{E_{\max}B_{\max}}{E_{\max}}$	c) $\frac{E_{\text{max}}^2}{2}$	·· -2						
a) $\varepsilon_0 c^2 E_{\text{max}}^2$	b) $-\frac{\mu_0 c}{\mu_0 c}$	c) $$	d) $\mu_0 E_{\text{max}}^2$	ao	bø	co	do	20.	
21. A nonmagnetic of		electric constant of 9 (the	at is, $K = 3^2 = \sqrt{81}$. There	fore.	electr	omag	netic	
waves move through			ball		,				
, C	C	noitexire	C		\cap				
a) $\frac{c}{9}$	b) $\frac{c}{3}$	c) <i>c</i>	d) $\frac{c}{81}$	ao	bo	CO		21.	
22. In a(n)	, the osc	illations all have the sam	e phase over any flat	surface	that i	is per	pendi	cular	
to the wave's velocit	y.								
a) polarization	b) heat wave	c) em spectrum	d) plane wave	ao	bo	co	dø	22.	
00 TI :			· 10.0 NU 2 U	1	(* 11				
•		agnetic wave in vacuum sity in vacuum would be		electric	neld	ampli	tude	were	
one-unite as large, in		Sity III vacuulii would be	¥¥/111-,						
	S .	10.0	10.0						
a) 3 × 18.0 = 54	b) 3 ² × 18.0 =	162 c) $\frac{18.0}{3} = 6.0$	d) $\frac{18.0}{22} = 2.0$	ao	bo	co	dø	23.	
		done in class yesterday,	2					ed of	
em waves in vacuum			- J - 1	1			T		
chi waves in vacuun	4 <i>πε</i> 0	Juais My C	2						
		478 E8 = 478 (34) = 470							
a) $4\pi \times 10^{-7} \text{ T} \cdot \text{m/A}$	b) 8.854 ×	10^{-12} F/m c) $\frac{\mu_0 c^2}{c^2}$	- d) $\left(\frac{E_{\text{max}}}{B_{\text{max}}}\right)^2$	ao	bo	CO	do	24.	
		4π							
25. At one instant a	nd position in a li	nearly-polarized em wav	e, the electric field is	into th	ie pap	er (@) and	1 the	
magnetic field is left	(←). Therefore, th	he direction of the veloci	ty of the wave is				·		
a) out of the paper ((\mathfrak{O}) b) right (\rightarrow)	c) toward the top (\uparrow) d) toward the bottom (,	,) ao	bo	CO	do	25.	
<u></u>	· · · · ·			1 0. 1		1			
	•	ncarly-polarized em way			←) ar	id the	Poy	nting	
vector is into the pap	er (\otimes). The corres	sponding magnetic field	is directed				•		
a) out of the paper (\bigcirc) b) right (\rightarrow)	c) toward the top (\uparrow) d) toward the bottom () ao	bo	CO	do	26.	