GREAT (90 + no dvill set = 207 A- Now 186 = 938. J6 11 Have. NAME Hay. PHYSICS 242 PAGE 1 OF 2 EXAM 2dS12 1. (20 points) This problem is the one that I promised you about a conductor that contains a cavity. The conductor's free charges are at rest overall. There is a charge q (insulated from the conductor) in the cavity. The excess charge on the cavity wall = +9 pC. The cavity wall can also be called the *inner* surface of the conductor. The excess charge on the outer surface of the conductor is -5 pC. Your answers must be consistent. $Q_{cw} = \P_p G$ $Q_{outer} = -5 p G$ The net electric flux is zero through all Gaussian surfaces completely in the material of the conductor because E =_____ there. Thus, the insulated charge $q = -\frac{q}{pC}$ and there is _____ pC distributed through the bulk of the material. Therefore, the total excess charge on the conductor is $\frac{4}{p}$ C pC. AT THE RIGHT OF THE PAGE, FILL IN THE "0" OF THE BEST ANSWER, FOR EXAMPLE, de. >>IF YOU DON'T KNOW IT, RULE OUT THE OBVIOUSLY WRONG ANSWERS AND THEN GUESS.<< 4 points each to a maximum of 70 points 2. There are only two charges in a certain region of space. Charge 1 is +3 nC and is outside of a Gaussian surface. Charge 2 is -5 nC and is *inside* that Gaussian surface. For that Gaussian surface, $Q_{encl} = _$ ____ nC. a) -5 b) +3c) - 3d) 5 - 3 = 220 do 2. ho co 3. The symbol \oint refers to an integral over a(n)surface. a) circular b) flat c) open d) closed ao bo co de 3 4. Consider a very long straight line of negative charge, that is, with a $-\lambda$. The Gaussian surface surrounding it is that of a coaxial cylinder of radius r and length l. The side of the cylinder has an area $2\pi r l$ and its ends each have an area πr^2 . The cylinder's volume is $\pi r^2 l$. The charge enclosed within this Gaussian surface is a) $-\lambda l$ b) $-2\lambda\pi r^2$ c) $-\lambda 2\pi r l$ d) $-\lambda \pi r^2 l$ ao bo co do 4. 5. Continuing Question 4, in the integral over either end of the Gaussian surface, $E \cos \phi dA$ equals because the vectors \vec{E} and \vec{dA} are ______. (cos 0 = 1, cos 90° = 0, cos 180° = -1) a) -E dA, antiparallel c) E dA, parallel b) zero, perpendicular d) $E\pi r^2$, integrated ao co do 5. 6. Continuing Question 4, $\int dA$ over the side of the Gaussian surface equals c) $\frac{Q_{\text{encl}}}{\varepsilon_0}$ a) πr^2 b) $2\pi rl$ d) $\pi r^2 l$ 20 he co do 6. 7. Which one of these four equations is NOT a version of Gauss's law? a) $\Phi_E = \frac{Q_{\text{encl}}}{\varepsilon_0}$ c) $\Phi_E = \oint E \cos \phi \, dA$ b) $\oint E_{\perp} dA = \frac{Q_{\text{encl}}}{\varepsilon_0}$ d) $\oint \vec{E} \cdot d\vec{A} = \frac{Q_{\text{encl}}}{\epsilon_0}$ ao bo do 7 8. A uniform electric field makes an angle of 60° with a flat surface. Thus it makes an angle of $90^{\circ} - 60^{\circ} = 30^{\circ}$ with the normal to the surface. The area of the surface is 0.004 m². The resulting electric flux through the surface is 800 N·m²/C. Therefore, the magnitude of the electric field is _____ N/C a) (800)(0.004)cos 30° c) (800)(0.004)cos 60°

b) $\frac{800}{0.004 \cos 60^{\circ}}$

d) $\frac{800}{0.004 \cos 30^{\circ}}$

ao bo co de 8.

PHYSICS 242		EXAM 2dS1	2	-		PAC	GE 2	OF
Q The constant so	anale	C2				,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,		
2) 1 602 \times 10–19	b) 8 854 \times 10–12	$N \cdot m^2$ ·	d) 9.0×10^9	20	he	0	do	0
a) 1.002 × 10	0) 0.034 × 10	C) 0.0 × 10	u) J.0 × 10-	a0	De		uu	
10. A spherical cha find <i>E outside</i> of th	rge distribution has a u is distribution. We use	iniform <i>positive</i> charg	e density ρ and a radii I Gaussian surface of	us <i>R</i> . W radius <i>r</i>	e use whe	rer >	ss's l	law t
Recall that	a sphere of general rad	ius a has diameter $2a$.	surface area $4\pi a^2$. and	d volum	$e^{\frac{4}{2}\pi a}$	a ³ .		
					• 5 ***	م من ا		
						tor	7.60	
					1	U (74" 1)	
							Series . 	J L
A toll mainte au tha	Consistent starte the	\overrightarrow{F}				1		
At all points on the	Gaussian surface, the							
a) tangent to the surb) radially inward	face	c) undeterminedd) radially outwar	ď	ao	bo	со	de	10
11. Continuing Oue	stion 10 above: at all r	points on the Gaussiar	surface, the direction	of $d\overline{A}$	is	••••••		
	for a second sec		i suitace, me uncetton	OF UT	15			
b) radially inward	тасе	d) radially outwar	ď	ao	bo	со	dø	11
12 Continuing Out	stion 10 above: $\oint E d$	$A - E \oint dA$ over the G	auguian ourfage bagau	o Fic		****		
		$A = E \mathcal{Y} u A \text{ over the } O$	aussian surface becaus		1			U
a) Gauss's, law		c) constant, symm	netry					
b) Gaussian, surfac	e	d) electrifying, go	lly	ao	bo	CØ	do	12
13. Continuing Que	estion 10 above: $\oint dA$ of	over the Gaussian surf	ace equals					
a) 4 <i>πR</i> ²	b) $\frac{4}{3}\pi A^{3}$	c) $4\pi r^2$	d) 2 <i>aA</i>	ao	bo	CQ	do	13
14. Continuing Que	estion 10 above: Qencl	equals ρ times						
$\frac{4}{3}$	1. 4 . 2	$\frac{4}{2}$ p ²						
a) $\frac{3}{3}\pi r^{3}$ 15 A charge of 12	$\frac{0.4\pi a^2}{0.nC}$ is uniformly dist	c) $\frac{1}{3}\pi R^{3}$	d) ε_0	ao	bo A C	CO Fancei	do an sr	14 17
encloses 72 nC of nC/m.	the 120 nC (leaving 4	8 nC outside the Ga	uussian surface). For	this cu	ve, λ	, =		
72	120		48					
a) $\frac{1}{2.4} = 30$	b) $\frac{1}{2.4} = 50$	c) zero	d) $\frac{10}{2.4} = 20$	a 0	be	co	do	15
16. The net electric	flux through the Gaus	sian surface of Proble	m 15 above is		× 10	-9 C/	EO.	
				e 1		Cri	-0-	
a) 72	b) 120	c) zero	d) 48	ao	bo	со	do	16
17 In using Gauss'	s law to find the elect	ric field caused by a	highly symmetric neg	ative cl	arge	distri	butio	11 137
must recall that its I	\vec{E} is directed	a negat	ive charge.		large	uistii	Dutio	11, 11
a) away from	h) around	a) toward	d) tangant ta		ħ.		J.	17
		c) toward	u) tangent to	ao	DO	CQ	ao	1/.
18. We find that \vec{E}	and \vec{dA} are antipara	allel (opposite) over p	art of a Gaussian sur	face. Tl	nerefo	re, in	evalu	ating
$\int \vec{E} \cdot d\vec{A}$ over that	part, we must use							
	b) $\phi = 180^{\circ}$	c) $\phi = 90^{\circ}$	$d = 1 - c_0$	20	ha	00	do	18.
a) $\theta = 0$	$\phi = 100$	0) φ = 90	$u)$ genci – c_0	40	00	0	uo	

a) cylinder with axis perpendicular to the surface b) cylinder with axis parallel to the surface Particular to the surface c) concentric sphere d) regular pyramid

ao bo co do 19.