PHYSICS 242
EXAM 2dS12
PAGE 1 OF 2
NAME
Mr. Haynes

1. (20 points) This problem is the one that I promised you about a conductor that contains a cavity. The conductor's free charges are at rest overall. There is a charge q (insulated from the conductor) in the cavity. The excess charge on the cavity wall $=+9 \mathrm{pC}$. The cavity wall can also be called the inner surface of the conductor. The excess charge on the outer surface of the conductor is -5 pC .

Your answers must be consistent.

```
Gcw=9p6
```

The net electric flux is zero through all Gaussian surfaces completely in the material of the conductor because $E=$ \qquad there. Thus, the insulated charge $q=-9, \mathrm{pC}$ and there is \qquad pC distributed through the bulk of the material. Therefore, the total excess charge on the conductor is \qquad

AT THE RIGHT OF THE PAGE, FILL IN THE "o" OF THE BEST ANSWER, FOR EXAMPLE, db. \gg IF YOU DON'T KNOW IT, RULE OUT THE OBVIOUSLY WRONG ANSWERS AND THEN GUESS.<< 4 points each to a maximum of 70 points

2. There are only two charges in a certain region of space. Charge 1 is +3 nC and is outside of a Gaussian surface. Charge 2 is -5 nC and is inside that Gaussian surface. For that Gaussian surface, $Q_{\mathrm{encl}}=$ \qquad nC .
a) -5
b) +3
c) -3
d) $5-3=2$
a bo
o co
do
3.
4. The symbol \oint refers to an integral over an) \qquad surface.
a) circular
b) flat
c) open
d) closed
au bo co de
5.
6. Consider a very long straight line of negative charge, that is, with $a-\lambda$. The Gaussian surface surrounding it is that of a coaxial cylinder of radius r and length l. The side of the cylinder has an area $2 \pi r l$ and its ends each have an area πr^{2}. The cylinder's volume is $\pi r^{2} l$. The charge enclosed within this Gaussian surface is \qquad —.
a) $-\lambda l$
b) $-2 \lambda \pi r^{2}$
c) $-\lambda 2 \pi r l$
d) $-\lambda \pi r^{2} l$
ar bo co do
7.
8. Continuing Question 4, in the integral over either end of the Gaussian surface, $E \cos \phi d A$ equals \qquad because the vectors $\overrightarrow{\boldsymbol{E}}$ and $d \overrightarrow{\boldsymbol{A}}$ are \qquad . $\left(\cos 0=1, \cos 90^{\circ}=0, \cos 180^{\circ}=-1\right)$
a) $-E d A$, antiparallel
c) $E d A$, parallel
b) zero, perpendicular
d) $E \pi r^{2}$, integrated
ac be co do
9.
10. Continuing Question 4, $d d A$ over the side of the Gaussian surface equals
a) πr^{2}
b) $2 \pi r l$
c) $\frac{Q_{\text {encl }}}{\varepsilon_{0}}$
d) $\pi r^{2} l^{-}$
ac be co do
11.
12. Which one of these four equations is NOT a version of Gauss's law?
a) $\Phi_{E}=\frac{Q_{\text {encl }}}{\varepsilon_{0}}$
c) $\Phi_{E}=\oint E \cos \phi d A$
b) $\oint E_{\perp} d A=\frac{Q_{\mathrm{encl}}}{\varepsilon_{0}}$
d) $\oint \overrightarrow{\boldsymbol{E}} \cdot d \overrightarrow{\boldsymbol{A}}=\frac{Q_{\mathrm{encl}}}{\varepsilon_{0}}$
aa bo ce do
13.
14. A uniform electric field makes an angle of 60° with a flat surface. Thus it makes an angle of $90^{\circ}-60^{\circ}=30^{\circ}$ with the normal to the surface. The area of the surface is $0.004 \mathrm{~m}^{2}$. The resulting electric flux through the surface is $800 \mathrm{~N} \cdot \mathrm{~m}^{2} / \mathrm{C}$. Therefore, the magnitude of the electric field is \qquad N/C.
a) $(800)(0.004) \cos 30^{\circ}$
c) $(800)(0.004) \cos 60^{\circ}$
b) $\frac{800}{0.004 \cos 60^{\circ}}$
d) $\frac{800}{0.004 \cos 30^{\circ}}$

| 9. The constant ε_{0} equals | $\frac{\mathrm{C}^{2}}{\mathrm{~N}^{2}}$. |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| a) 1.602×10^{-19} b) 8.854×10^{-12} c) 8.8×10^{12} d) 9.0×10^{9} ao | |

10. A spherical charge distribution has a uniform positive charge density ρ and a radius R. We use Gauss's law to find E outside of this distribution. We use a concentric spherical Gaussian surface of radius r, where $r>R$.

Recall that a sphere of general radius a has diameter $2 a$, surface area $4 \pi a^{2}$, and volume $\frac{4}{3} \pi a^{3}$.

At all points on the Gaussian surface, the direction of \vec{E} is
a) tangent to the surface
c) undetermined
b) radially inward
d) radially outward
ao bo co de 10 .
11. Continuing Question 10 above: at all points on the Gaussian surface, the direction of $d \vec{A}$ is
a) tangent to the surface
c) undetermined
b) radially inward
d) radially outward
ao bo co do 11 .
12. Continuing Question 10 above: $\oint E d A=E \oint d A$ over the Gaussian surface because E is \qquad by
a) Gauss's, law
c) constant, symmetry
b) Gaussian, surface
d) electrifying, golly
ao bo ce do 12 .
13. Continuing Question 10 above: $\oint d A$ over the Gaussian surface equals
a) $4 \pi R^{2}$
b) $\frac{4}{3} \pi A^{3}$
c) $4 \pi r^{2}$
d) $2 a \mathrm{~A}$
ao bo ce do 13 .
14. Continuing Question 10 above: $Q_{\text {encl }}$ equals ρ times
a) $\frac{4}{3} \pi r^{3}$
b) $4 \pi a^{2}$
c) $\frac{4}{3} \pi R^{3}$
d) ε_{0}
ao bo co do 14.
15. A charge of 120 nC is uniformly distributed over an insulating curve of length 2.4 m . A Gaussian surface encloses 72 nC of the 120 nC (leaving 48 nC outside the Gaussian surface). For this curve, $\lambda=$ nC / m.
a) $\frac{72}{2.4}=30$
b) $\frac{120}{2.4}=50$
c) zero
d) $\frac{48}{2.4}=20 \quad$ ao be co do 15 .
16. The net electric flux through the Gaussian surface of Problem 15 above is \qquad $\times 10^{-9} \mathrm{C} / \varepsilon_{0}$.
a) 72
b) 120
c) zero
d) 48
a. bo co do 16.
17. In using Gauss's law to find the electric field caused by a highly symmetric negative charge distribution, we must recall that its \vec{E} is directed \qquad a negative charge.
a) away from
b) around
c) toward
d) tangent to
ao bo ce do
17.
18. We find that $\overrightarrow{\boldsymbol{E}}$ and $d \overrightarrow{\boldsymbol{A}}$ are antiparallel (opposite) over part of a Gaussian surface. Therefore, in evaluating $\int \vec{E} \cdot d \overrightarrow{\boldsymbol{A}}$ over that part, we must use
a) $\theta=0$
b) $\phi=180^{\circ}$
c) $\phi=90^{\circ}$
d) $Q_{\text {encl }}=\varepsilon_{0}$
ao be co do 18.
19. Suppose that we want to use Gauss's law to find the electric field due to a very large flat surface with a uniformly distributed positive charge. To take advantage of symmetry, the Gaussian surface we should use is a
a) cylinder with axis perpendicular to the surface
c) concentric sphere
b) cylinder with axis parallel to the surface
d) regular pyramid
ae bo co do
19.

